
CHAPTER

THIRTEEN

CONCURRENT PASCAL AND

DISTRIBUTED PROCESSES

One of the most proli�c researchers and implementors of concurrent and dis-
tributed systems is Per Brinch Hansen. This chapter describes Brinch Hansen's
language for distributed programming, Distributed Processes. For pedagogical
purposes, we begin by describing a predecessor of Distributed Processes, Con-
current Pascal.

Concurrent Pascal is a multiprocessing extension of Pascal. It has three im-
portant features for structuring concurrency: processes, monitors, and classes.
Processes are active computing agents. Monitors synchronize access to shared
data. Classes provide structured access to data when synchronization is not re-
quired.

Distributed Processes is a language for distributed and real-time systems. It
takes the processes, monitors, and classes of Concurrent Pascal and uni�es them
into a single construct, the process. Its communication mechanism, the remote
procedure call, has been copied by several other systems.

These languages focus on the problems of resource management and real-
time control. Their \pragmatic" features are the pragmatic features of the system
implementor|synchronization and primitive abstraction mechanisms|but not
dynamic structures, automatic bu�ering, and so forth. The primary motivation
in the design of Concurrent Pascal and Distributed Processes is to facilitate the
programming of powerful, secure, and easily extended systems programs.

183

184 languages

13-1 CONCURRENT PASCAL

Concurrent Pascal extends the sequential programming language Pascal with
mechanisms for structured multiprocessing. Its design was motivated by the ob-
servation that the hardest part of concurrent programming is assuring the se-
curity of local storage and mutual exclusion in accessing shared storage. Thus,
in Concurrent Pascal access rights and synchronization are primitive language
structures, enforced by the compiler.

Concurrent Pascal has three structures that combine aspects of active com-
puting and static data storage: processes, monitors, and classes. A process is
a computing agent. It has three parts: a sequential program, private data, and
access rights. Concurrent Pascal rejects the scoping rules of languages like Al-
gol. A process's private data is the only data it can access directly; no other
process can access that data. The access rights of a process specify the other
system objects (monitors and classes) that this process can call. A monitor

is a protection and abstraction mechanism for shared data. Monitors ensure
that only a single process acts on shared data at any time. Classes, like mon-
itors, provide data abstraction. But unlike monitors, the structure of programs
guarantees that only a single process will execute the code of any class at any
time.

Our �rst example in Concurrent Pascal is a program for printing the prime
Fibonacci numbers. This program has two processes, one that generates suc-
cessive Fibonacci numbers, and another that tests them for primeness. These
processes communicate through a shared bu�er|a monitor. This bu�er stores a
single number. When the prime tester �nds that one of the Fibonacci numbers
sent it is prime, it calls on a class object, a LinePrinter, to print it. Figure 13-1
shows the parts of this program. We describe each kind of object in a type state-
ment, declaring actual instances of each type that the program uses in a var

statement. The program of the Fibonacci process is as follows:

type Fibonacci =

process (buf: bu�er) - - A Fibonacci process has access rights to a

monitor of type bu�er.

var this, last, previous: integer; - - the process's private data

begin

last := 0;

this := 1;

cycle - - that is, \while true do"

previous := last; - - Compute the next Fibonacci number.

last := this;

this := last + previous;

buf.add(this) - - Place this Fibonacci number in the bu�er.

end

end;

concurrent pascal and distributed processes 185

Figure 13-1 Information ow in communication in the prime-Fibonacci system.

Processes do not share data directly. Instead, they share data through calls
on monitors [Hoare 74]. A monitor speci�es a shared data structure and provides
the procedures and functions to manipulate that data structure. A monitor pro-
cedure that can be called from another process or monitor is a procedure entry.
For example, monitor stack could have procedure entry pop. Processes could pop
an element from the stack by calling stack.pop.

Each monitor also has an initial operation. When it creates a new monitor,
the system executes that monitor's initial operation. An important use of this
operation is to initialize the monitor's data structures. For example, the initial
operation of a stack monitor would set the stack to empty. Like a process, a
monitor can also have explicit access rights to other monitors and classes.

To enter a monitor, a process calls an entry procedure in that monitor. If no
other process is in that monitor, the process begins executing the code associated
with that entry. If another process is in the monitor, the calling process waits
until the monitor is free. The restriction that only a single process can execute the
code of a monitor at any time is a simple mechanism for short-term scheduling.

Monitors serialize access to shared data. However, many programs require
a more complex scheduling algorithm than simple mutual exclusion. Concurrent
Pascal provides queues for medium-term scheduling. Queues are used to delay
processes until it is appropriate for them to continue. There are two operations
on queues, delay and continue. A queue stores a single process-state descriptor.
If process A executes delay on queue q, then A is blocked on q. The monitor
unlocks and allows other processes entry. When another process, B, executes
continue(q), B returns from its call to the monitor and A continues executing
(in the monitor) from the point after the delay statement. The monitor remains
locked against other processes. Despite the mental image of processes waiting in
line that the name \queue" evokes, queues in Concurrent Pascal can hold only
a single process. However, Concurrent Pascal allows arrays of queues.

In our example, the bu�er is a monitor. Bu�ers do not have access rights
to any other system objects. They have storage for a single bu�ered value, an

186 languages

integer; a boolean ag that indicates that the bu�er is full; and two queues, one
which delays a consumer that tries to remove from an empty bu�er and another
which delays a producer that tries to add to a full bu�er. Bu�ers have two entry
procedures: add, called by the producer, and remove, called by the consumer.*

type bu�er =

monitor;

var

data : integer;

ag : boolean;

pwaiting, cwaiting : queue;

procedure entry add (invalue: integer);

begin

if ag then delay(pwaiting);

ag := true;

- - If the bu�er is full, delay the

producer.

data := invalue;

continue(cwaiting)

end;

procedure entry remove (var outvalue: integer);

begin

if not(ag) then delay(cwaiting);

ag := false;

- - If the bu�er is empty, delay the

consumer.
outvalue := data;

continue(pwaiting)

end;

begin - - initial statement

ag := false - - The bu�er is initially empty.

end;

The consumer process PrimeTester resembles the producer. It calls the bu�er
to obtain the next value and tests to see if it is prime. If it is, the consumer
process calls the printer, a class object of type LinePrinter, to print it.

type PrimeTester =

process (buf: bu�er);

var

num, j : integer;

* Variables declared globally in a monitor are permanent and shared by the entry procedures

of that monitor. Variables declared in a procedure are allocated afresh for each call to that

procedure. Monitors can also have \non-entry" (ordinary) procedures, used by the program of

that monitor and not by other system objects.

concurrent pascal and distributed processes 187

prime : boolean;

printer : LinePrinter; - - This declaration creates a printer class object, of

type LinePrinter.

begin

cycle

buf.remove(num);

if ((num mod 2) = 1 or (num = 2)) then - - odd or 2

begin

j := 3;

prime := true;

while (j < sqrt(num)) and prime do

prime := not ((num mod j) = 0);

- - not the most e�cient

way to test primeness
j := j + 2

end

end;

if prime then printer.show(num)

end

end;

In Concurrent Pascal, a class is an abstract data object that is not shared. A
class object can be declared only as a permanent variable within another system
object. Classes can be passed as (access-rights) parameters to other classes, but
never to processes or monitors. Hence, two processes cannot call the same class
object simultaneously and class objects do not require scheduling. This permits
the Concurrent Pascal compiler to optimize calls on classes, making such calls
execute faster than calls on monitors. This optimization is the major reason
for including classes in Concurrent Pascal. The di�erence between classes and
monitors is primarily one of e�ciency, not functionality.

Peripheral devices are treated as hardware implementations of monitors.
They have only a single access procedure, io. This procedure delays the calling
process until the completion of the input-output process. Thus, a class of type
LinePrinter is

type LinePrinter =

class;

var parm = record : : : end;

- - The standard procedure io takes arguments of a particular internal

structure. We omit the details of that structure.

procedure entry show (i: integer);

begin

io(i, parm, \LPT")

end;

188 languages

begin

- - LinePrinters do not need initialization.

end;

Each of the above examples is a type declaration. Specifying a description of
a monitor or a process does not create one, any more than specifying a type
declaration in Pascal allocates storage. A program with such type statements
allocates these objects in a var statement. The program starts the processes and
runs the initialization statements of the monitors and classes with an init state-
ment. This init statement also provides the names of the other system objects
to which this object has access. The entire program is

program FibonacciPrimes;

type

Fibonacci = process : : : ;

bu�er = monitor : : : ;

PrimeTester = process : : : ;

var

FProd : Fibonacci;

FConsum : PrimeTester;

FBu�er : bu�er;

begin

init FProd(FBu�er), FConsum(FBu�er), FBu�er;

end;

Storage allocation in Concurrent Pascal is completely static. It lacks recur-
sion and has no command to dynamically create new processes or monitors.
Concurrent Pascal not only does not dynamically allocate storage, it never deal-
locates storage. Even if a process has terminated, its storage continues to exist.
The system cannot reclaim its storage because that storage may have been passed
by reference to another system object.

Must Concurrent Pascal be so static? Brinch Hansen presents the reasoning
behind these choices as [Brinch Hansen 75, p. 201]:

Dynamic process deletion will certainly complicate the semantics and implementation of

a programming language considerably. And since it appears to be unnecessary for a large

class of real-time applications, it seems wise to exclude it altogether. So an operating

system written in Concurrent Pascal will consist of a �xed set of processes, monitors

and classes. These components and their data structures will exist forever after system

initialization. An operating system can, however, be extended by recompilation. It remains

to be seen whether this restriction will simplify or complicate operating system design.

Dining philosophers The dining philosophers problem illustrates processes
that share monitors. Our program uses �ve processes, one for each philosopher; a
monitor for each fork; and a monitor for the room. A philosopher process thinks,
enters the room, picks up the forks, eats, drops the forks, leaves the room, and

concurrent pascal and distributed processes 189

Figure 13-2 The objects in the dining philosophers program.

repeats the cycle. The dining philosophers problem is a pure synchronization
problem. Thus, the system components exchange only synchronization, not in-
formation. Figure 13-2 shows the communication relationships of the elements
of this system.

type philosopher =

process (theroom: room; left, right: fork);

begin

cycle

- - think;

theroom.enter;

left.pickup;

right.pickup;

- - eat;

left.putdown;

right.putdown;

theroom.exit

end

end;

190 languages

Forks are monitors. Each fork has a boolean ag that shows if it is taken, a
queue to delay the philosopher that tries to take it when it is busy, and two entry
procedures, pickup and putdown. Forks are initially free. A philosopher that tries
to pick up a taken fork is delayed in the pleasewait queue; each philosopher, as
she drops the fork, continues that queue, thereby giving a waiting philosopher
her turn.

type fork =

monitor;

var

taken : boolean;

pleasewait : queue;

procedure entry pickup;

begin

if taken then delay(pleasewait);

taken := true

end;

procedure entry putdown;

begin

taken := false;

continue(pleasewait)

end;

begin

taken := false

end;

A room is a monitor. It keeps the number of dining philosophers at four or
fewer, delaying any philosopher that tries to enter when four of her companions
are eating. It has a variable to count the philosophers in the room, a queue for the
waiting philosopher, and procedure entries enter and exit. The room is initially
empty.

type room =

monitor;

var

occupancy: integer;

WithoutReservations: queue;

procedure entry enter;

begin

if occupancy = 4 then delay (WithoutReservations);

occupancy := occupancy + 1

end;

concurrent pascal and distributed processes 191

procedure entry exit;

begin

occupancy := occupancy � 1;

continue (WithoutReservations)

end;

begin

occupancy := 0

end;

Since processes, monitors, and classes are objects, declared in type state-
ments, we can have arrays of them. We pass the objects they access to the
philosophers when we initialize them. The program for the dining philosophers
problem is

program dining;

type

philosopher = process : : : ;

fork = monitor : : : ;

room = monitor : : : ;

var

philosophers : array [0 .. 4] of philosopher;

forks : array [0 .. 4] of fork;

chamber : room;

i : integer;

begin

init chamber;

for i := 0 to 4 do init forks[i];

for i := 0 to 4 do init philosophers[i](chamber, forks[i], forks[(i+1) mod 5])

end;

13-2 DISTRIBUTED PROCESSES

Concurrent Pascal provides three di�erent primitives (processes, monitors, and
classes) for data encapsulation and parallel processing. Brinch Hansen recognized
that this multiplicity was unnecessary. The di�erence between monitors and
classes is primarily an optimization hint to the compiler. And the di�erence
between processes and monitors is just the embedding of active processing in
processes. Even so, monitors and classes need some active processing for their
initialization statements. In his successor language, Distributed Processes, Brinch
Hansen uni�es these three concepts into a single entity, the process.

192 languages

Concern for resource allocation and real-time issues motivated the design of
Distributed Processes. A Distributed Processes system has a �xed set of concur-
rently executing, sequential processes. Processes are determined at compilation
and can be neither dynamically created nor destroyed.

A Distributed Processes's process can access only its own local storage. There
are no global data structures (like the monitors of Concurrent Pascal) shared by
several processes. Instead, processes communicate by calling procedures (com-

mon procedures) in other processes, sending and returning parameter values.
Each process multiprocesses the tasks of executing its own program and han-
dling calls to its common procedures. In some sense, the processes of Distributed
Processes act as monitors for each other, though without the speci�c synchroniza-
tion rules of monitors. Since Distributed Processes is concerned with distributed
processing, values are passed by value, not by reference. A call from one process
to another is an external request.

Distributed Processes uses Pascal for syntactic foundation. The principal
extensions are the constructs for interprocess communication. Each process has
four parts: a name, local storage, common procedures, and an initial statement.
Syntactically, the verb call invokes an external request. Like Concurrent Pascal,
a process calls a procedure in another process by referencing the procedure name
together with the process name. Thus, the one parameter procedure NextChar-

acter in process CardReader is invoked by

call CardReader.NextCharacter(C)

Procedure NextCharacter in process CardReader has no input (value) parameters
and a single output (result) parameter of type char. The process's input and
output parameters are separated in the parameter list declaration by a #. Thus,
the declaration of process CardReader begins

process CardReader;

var count: integer; - - a local variable

procedure NextCharacter (# ch: char); - - a single output parameter
...

Distributed Processes includes a variant of Dijkstra's guarded commands
(Section 2-2). Guarded clauses are formed by joining the guarded condition (a
boolean expression) to the guarded action (a statement) with a \ :". Guarded
clauses are joined with \j"s to form guarded regions.* Of course, guarded regions
imply an indeterminate choice among the open guarded clauses.

Each process performs two kinds of computations: executing its own pro-
gram (its initial statement) and handling calls to its common procedures. The

* This contrasts with the ! and [] notation of the original syntax.

concurrent pascal and distributed processes 193

Table 13-1 Guards and loops

Non-waiting Waiting

Single if B1:S1 | : : : | Bn:Sn end when B1:S1 | : : : | Bn:Sn end

Execution If a Bi is true, then execute the

corresponding Si; an error if none

of the Bi is true.

Wait for a Bi to be true, then ex-

ecute the corresponding Si.

Repeated do B1:S1 | : : : | Bn:Sn end cycle B1:S1 | : : : | Bn:Sn end

Execution Repeatedly �nd a true Bi and ex-

ecute the corresponding Si, until

all Bi are false.

Repeatedly �nd a true Bi and ex-

ecute the corresponding Si. If no

Bi is true, wait until one is. This

statement never terminates.

process interleaves these actions. This interleaving is not preemptive; instead,
the process executes each task until the task blocks in a guarded command. At
that point, the process can execute another task. Speci�cally, the process begins
by executing its initial statement. When this statement terminates or blocks, the
process starts some other pending operation. When that operation terminates or
blocks, the process starts yet another pending operation. These operations are
either resumptions of the initial statement or calls to the process's procedures.
Operations blocked in guarded commands become pending when one of their
guards becomes true. This interleaving continues for the life of the program.
Even if the initial statement terminates, the process continues to exist, handling
calls to its common procedures. Distributed Processes does not guarantee any
particular ordering on the interleaved operations of a process. We know only that
the �rst statement executed is the process's initialization statement. The inter-
leaving is not preemptive. It is a function of the execution path of the program,
not the pseudosimultaneity of simulated multiprocessing.

In Distributed Processes, guarded commands control two dimensions of proc-
essing: waiting and repetition. Distributed Processes has two choices for each of
these and a language verb for each of the four possible combinations. Waiting
concerns the action to be taken when none of the guard clauses is true. In that
case, the process can either wait for one to become true (by using the language
verbs when and cycle) or exit the statement (if, do). Repetition speci�es how
frequently to evaluate the guarded region: once (if, when) or repeatedly (do,
cycle). The do statement executes until all guards are false; the if statement
aborts the program with an error if all guards are false. Table 13-1 summarizes
the kinds of guarded statements in Distributed Processes.

A process executes the statements of its current program segment until either
(1) the program blocks in the guarded region of a when or cycle statement,
or (2) the program blocks, waiting for the return from a call to an external
procedure. If the process is in a guarded region, then it is free to interleave the

194 languages

evaluation of the initial statement and other calls to its common procedures.
On the other hand, if the process is waiting on an external call, the process
pauses until that call returns. That is, a process blocked on a guarded command
is waiting to serve and is eligible to handle other calls. A process blocked on
a call to another process is presumed to need the results of that call before it
can continue. When the external call returns, the process continues executing
statements where it left o�. This implies that processes must not be mutually
recursive; if process A calls a procedure in process B and process B then calls
a procedure in process A, they are both blocked, each waiting for the other's
return.

Unlike CSP (Chapter 10), guarded commands in Distributed Processes do
not speci�cally control communication. Instead, a process pauses in a guarded
command, waiting for changes caused by other calls to this process.

Binary semaphore Perhaps the simplest synchronization primitive is the bi-
nary semaphore. In our Distributed Processes program for a semaphore, the
semaphore is a process. It has two common procedures, P (get the semaphore)
and V (release the semaphore). The semaphore keeps its state in variable s. When
s is positive, the semaphore is free; when it is zero, the semaphore is busy. Pro-
cedure P waits until s is positive, then decrements it and continues. Procedure
V simply increments s.

process Binary Semaphore;

var s: integer;

procedure P;

when s > 0:

s := s � 1

end;

procedure V;

s := s + 1;

begin - - initialization statement

s := 1

end;

A general semaphore that permits n processes to share a resource is the binary
semaphore with s initialized to n.

Dining philosophers In Distributed Processes, we can declare an array of proc-
esses, all executing the same program but each with its own storage. Identi�er
this, when used in the body of a process, is the index of that process in the array.
Our program for the dining philosophers problem uses an array of �ve philoso-
pher processes, �ve fork processes, and a room process. Figure 13-3 shows the
calling relationships in the program. The program for a philosopher is as follows:

concurrent pascal and distributed processes 195

Figure 13-3 The Distributed Processes dining philosophers.

process philosopher [5]; - - There are �ve philosophers.

- - Philosophers have no storage. Since they are not called by other

processes, they do not have entry procedures.

do true: - - one way to get an in�nite loop

- - think;

call room.enter;

call fork[this].pickup;

call fork[(this + 1) mod 5].pickup;

- - eat;

call fork[this].putdown;

call fork[(this + 1) mod 5].putdown;

call room.exit;

end;

Forks are also processes. They keep track of their state in boolean variable busy.

process fork[5];

196 languages

var busy: boolean;

procedure entry pickup;

when not(busy):

busy := true

end;

procedure entry putdown;

busy := false

- - initialization statement

busy := false

end;

The room keeps the usual counts.

process room;

var occupancy: integer;

procedure entry enter;

when occupancy < 5:

occupancy := occupancy + 1

end;

procedure entry exit;

occupancy := occupancy � 1

end;

- - initialization statement

occupancy := 0

end;

The last section showed a similar solution to the dining philosophers problem
in Concurrent Pascal. That solution relied on explicit delay and continue state-
ments to schedule the philosopher processes. On the other hand, this solution
uses the indeterminacy of guarded commands for scheduling.

Apart from the extensions described above, the syntax of Distributed Proc-
esses is just a variant of standard Pascal. However, like Concurrent Pascal, Dis-
tributed Processes does not have any constructs (like recursion and explicit al-
location) that dynamically create storage. Therefore, storage allocation in Dis-
tributed Processes can be done at compilation.

Distributed Processes is a language for implementing resource managers. It
requires that the conceptual processes of the programming language must be
matched, one for one, with the physical processors of the distributed system.

concurrent pascal and distributed processes 197

Bounded bu�er A bounded bu�er (that stores elements of type Bu�erItems)
is a process with two procedures, Insert and Remove. Insert waits until the bu�er
is not full; Remove, until the bu�er is not empty. They interact by updating
pointers into the bu�er.

process BoundedBu�er;

const Bufsize = 100;

var

�rst, last : integer; - - First points to the next available item; last to the

most recent addition.

queue : array [0 .. Bufsize � 1] of Bu�erItem;

procedure Insert (m: Bu�erItem); - - one input parameter

when not (((last + 1) mod Bufsize) = �rst): - - queue not full

last := (last + 1) mod Bufsize;

queue[last] := m

- - Put this item in the

queue.

end;

procedure Remove (# m: Bu�erItem); - - one output parameter

when not (last = �rst): - - queue not empty

m := queue[�rst]; - - Pull an item from the queue.

�rst := (�rst + 1) mod Bufsize

end;

begin - - initialization statement

�rst := 0;

last := 0

end;

The system executes the initialization statement of the bu�er once. On the other
hand, the bu�er exists for the entire run of the program.

This is an antifair bu�er. A process that wishes to access this bu�er can be
arbitrarily and inde�nitely ignored while the bu�er handles other requests.

Perspective

Concurrent Pascal and Distributed Processes lie on the extreme operating sys-
tems end of the coordinated computing spectrum. These languages have an
imperative, statement-oriented syntax, primitives that implement mutual ex-
clusion, explicit processes that cannot be dynamically created, and prede�ned
connections between processes. They rely on strong typing and other compila-
tion checks to ensure program correctness. Brinch Hansen views such checks as
the crucial ingredients for developing e�cient concurrent computing systems. He
writes [Brinch Hansen 78, p. 934]:

198 languages

Real-time programs must achieve the ultimate in simplicity, reliability, and e�ciency.

Otherwise one can neither understand them, depend on them, nor expect them to keep

pace with their environments. To make real-time programs manageable it is essential to

write them in an abstract programming language that hides irrelevant machine detail and

makes extensive compilation checks possible. To make real-time programs e�cient at the

same time will probably require the design of computer architectures tailored to abstract

languages (or even to particular applications).

The evolution of these languages (from Concurrent Pascal through Dis-
tributed Processes and on to Edison, discussed in the bibliography) moves away
from language design based on the perceived requirements of compiler con-
struction and towards building generality into the language. Concurrent Pascal
explicitly distinguishes between active processing elements and passive shared
structures and between synchronized and unsynchronized structures. Distributed
Processes eliminates this distinction. It has only a single variety of object, the
process. The language that results turns out to be not only simpler and more
esthetically pleasing, but also a system for which it is easier to write a compiler.
Brinch Hansen states [Brinch Hansen 78, p. 940]:

The Concurrent Pascal machine distinguishes between 15 virtual instructions for classes,

monitors, and processes. This number would be reduced by a factor of three for Distributed

Processes. In addition, numerous special cases would disappear in the compiler.

By and large, these languages are designed to be practical, usable tools, in-
stead of simple academic exercises. Many of the decisions in their design and
implementation were based on the di�culty of system implementation or re-
quirements for explicit user control. These decisions have resulted in theoretical
aws|the lack of recursion, the static storage allocation, and the �xed process
structure being among the most critical. However, it is inappropriate to urge
theoretical nicety on someone who must get something to work. The computing
world is littered with impractical implementations of ideas that are esthetically
pleasing. (Of course, the computing world is also littered with impractical sys-
tems that ignored theoretical generality chasing after the chimera of e�ciency.)

PROBLEMS

13-1 Rewrite the Concurrent Pascal bu�er program to use a larger bu�er.

13-2 Rewrite the Concurrent Pascal bounded bu�er program to serve more than one producer

and more than one consumer.

13-3 Redesign the bounded bu�er programs in Concurrent Pascal and Distributed Processes

so that a producer and a consumer can concurrently update the bu�er. How many monitors

or processes does your solution use?

13-4 Can a philosopher starve in the Concurrent Pascal solution to the dining philosophers

problem?

13-5 Can a philosopher starve in the Distributed Processes solution to the dining philosophers

problem?

13-6 Program a manager for the readers-writers problem in Distributed Processes.

concurrent pascal and distributed processes 199

REFERENCES

[Brinch Hansen 75] Brinch Hansen, P., \The Programming Language Concurrent Pascal,"

IEEE Trans. Softw. Eng., vol. SE-1, no. 2 (June 1975), pp. 199{207. This paper is a brief

description of the language Concurrent Pascal. Brinch Hansen illustrates the language

with examples of the bu�er processes of a miniature operating system.

[Brinch Hansen 77] Brinch Hansen, P., The Architecture of Concurrent Programs, Prentice-

Hall, Englewood Cli�s, New Jersey (1977). Brinch Hansen describes the nature of synchro-

nization and the languages Pascal and Concurrent Pascal. He then gives several examples

of concurrent systems written in Concurrent Pascal.

[Brinch Hansen 78] Brinch Hansen, P., \Distributed Processes: A Concurrent Programming

Concept," CACM, vol. 21, no. 11 (November 1978), pp. 934{941. This paper describes Dis-

tributed Processes. The binary semaphore and dining philosophers programs are derived

from this article.

[Brinch Hansen 81] Brinch Hansen, P., \The Design of Edison," Softw. Pract. Exper.,

vol. 11, no. 4 (April 1981), pp. 363{396. The path from Concurrent Pascal to Distributed

Processes was marked by reduction and simpli�cation|principally, the uni�cation of the

monitors, classes, and processes of Concurrent Pascal into a single, distributable object,

the process. In Edison, Brinch Hansen takes this process one step further, omitting most

conventional programming statements and synchronization structures.

Edison transforms the processes of Distributed Processes into Modules. Modules can

allocate storage and declare procedures and other modules. Each module has an initial

operation that is executed when the module is created. However, modules do not enforce

mutual exclusion. Several processes can be executing the procedures of the same module

simultaneously. Modules achieve mutual exclusion by using conditional critical regions.

Only one module can execute in the \global" conditional critical region at any time.

Concurrency is indicated with the equivalent of a parbegin statement.

Edison attempts to provide the tools for constructing concurrent systems, not to

dictate the tools that must be used. The processes of Distributed Processes combine

mutual exclusion and data abstraction. Edison separates these notions into explicit mutual

exclusion (conditional critical regions) and data abstraction (modules). Applications that

require monitors can implement them using modules and conditional critical regions.

Edison makes several linguistic advances over its predecessors. In particular, Edison

permits procedures as procedure parameters and allows recursive procedure calls. (This

second feature requires Edison to do dynamic storage allocation.) In addition, Brinch

Hansen proposes an interesting addition to the syntax of typed languages, retyped vari-

ables. If x is a variable and t a type, the expression x:t is the value of the bit string that

is x in the type t. The storage size of objects of the type of x and of objects of type t

must be the same.

This issue of Software|Practice and Experience contains papers by Brinch Hansen

describing Edison and giving examples of Edison programs.

[Hoare 74] Hoare, C.A.R., \Monitors: An Operating System Structuring Concept," CACM,

vol. 17, no. 10 (October 1974), pp. 549{557. This paper is Hoare's original description of

monitors. He argues that monitors are useful in programming operating systems.

[Li 81] Li, C.-M., and M. T. Liu, \Dislang: A Distributed Programming Language/System,"

Proc. 2d Int. Conf. Distrib. Comput. Syst., Paris (April 1981), pp. 162{172. Li and Liu

propose the language Communicating Distributed Processes (CDP). CDP extends Dis-

tributed Processes to be more \distributed." More speci�cally, CDP supplements Dis-

tributed Processes with the following additions: (1) A process can specify an action to

be taken on communication time-out. This action can be to retry the communication, to

abort the communication, or to transfer control to an exception routine. (2) A process can

use one of several di�erent broadcast mechanisms to communicate with several processes

200 languages

in the same step. (3) The language supports both synchronous and asynchronous requests.

(4) A program can specify that an operation is \atomic." Failure in an atomic action re-

turns the system to its state before the action was begun. (See Section 17-2 for a language

based on atomic actions.) (5) Timestamps are a primitive system data type. The system

generates new timestamps on request. (6) The broadcast mechanism allows the creation

of several responses to a single request. Programs can specify which of these responses are

desired: the �rst, the last, or all of them. And (7) the system can automatically create

replicated copies of data (for replicated databases).

To illustrate the features of the language, Li and Liu propose the \distributed dining

philosophers problem." This problem involves families of philosophers that borrow forks

from their neighbors, where di�erent families have di�erent responses when forks are not

immediately available.

[Wirth 77] Wirth, N., \Toward a Discipline of Real-Time Programming," CACM, vol. 20,

no. 8 (August 1977), pp. 577{583. This paper discusses the problems of real-time and

concurrent programming. Wirth argues that real-time programs should �rst be designed

as time-independent systems and then modi�ed to satisfy temporal requirements.

Wirth introduces the language Modula for describing real-time systems. Modula re-

sembles Concurrent Pascal in both design and intent. In addition to constructs that paral-

lel the classes, processes, and monitors of Concurrent Pascal, Modula has a type of object

for performing input and output. Whereas Concurrent Pascal prohibits simultaneous ac-

cess to a shared variable, Modula does not. Like Edison [Brinch Hansen 81], Modula is a

language that can be used to ensure security but does not demand it. Modula also leaves

many scheduling decisions to the programmer.

[Wirth 82] Wirth, N., Programming in Modula-2, Springer-Verlag, New York (1982). Modula

is a complex language. Wirth has designed a simpler successor, Modula-2. This book is

the reference manual for Modula-2.

